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A multilevel wavelet collection method for the sclution of partial
differential equations is developed. Two different approaches of
treating general boundary conditions are suggested. Both are based
on the wavelet interpolation technique developed in the present
research. The first approach uses wavelets as a basis and results
in a differential-algebraic system of equations, where the algebraic
part arises from boundary conditions. The second approach utilizes
extended wavelets, which satisfy boundary conditions exactly. This
approach results in a system of coupled ordinary differential equa-
tions. The method is tested on the one-dimensional Burgers equa-
tion with small viscosity. The solutions are compared with those
resulting from the use of other numerical algorithms. The present
results indicate that the method is competitive with wetl-established
numerical algorithms. ® 1995 Academic Press, Inc.

1. INTRODUCTION

The nonlinear partial differential equations which describe
physical phenomena, e g., the equations of fluid mechanics,
are usvally not susceptible to analytic solution. Conventional
methods used for numerical solutions of partial differential
equations mostly fall into three classes: finite difference meth-
ods, finite element methods, and spectral methods. Briefly,
the finite difference method consists in defining the different
unknowns by their values on a discrete (finitey grid and in
replacing differential operators by difference operators using
neighboring points. In the finite element method the equations
are integrated against a set of linear independent test functions
with small compact support, and the solution is considered as
a linear combination of this set of test functions. In spectral
methods, the unknown functions are developed along a basis
of functions having global support. This development is trun-
cated to a finite number of terms which satisfy a system of
coupled ordinary differential equations in time. The advantage
of using either of the first two numerical techniques is the
simplicity in adapting to complex geometries, while the main
advantage of spectral methods is the greater accuracy.

If the solution of a partial differential equation is regular,
any of three above-mentioned numerical techniques can be
applied successfully. However, singularities and sharp transi-
tions in solutions can be observed in many physical phenomena

such as the formation of shock waves in compressible gas
flow, the formation of vortex sheets in high Reynolds number
incompressible flow, and burst events in the wall region of
the turbulent boundary layer. A characteristic feature of such
phenomena is that the complex behavior occurs in a small
region of space and possibly intermittent in time. This makes
them particularly difficult to resolve numerically using the
above-mentioned methods. Spectral methods are not easily im-
plemented because the irregularity of the solution causes the
loss of high accuracy. Moreover, the global support of the
basis functions induces the well-known Gibbs phenomenon.
Accurate representation of the solution in regions where singu-
larities or sharp transitions occur requires the implementation
of adaptive finite difference or finite element methods (see, for
example, [1-5]). In these metheds an autematic error estimation
step determines Jocally whether the current resolution of the
numerical solution is sufficient or if a finer grid is necessary. The
main difficulty of adaptive methods is finding stable accurate
difference operators at the interface between grids of possibly
very different sizes.

Wavelet analysis 1s a new numerical concept which allows
one to represent a function in terms of a set of basis functions,
called wavelets, which are localized both in location and scale.
As we noted earlier, spectral bases are infinitely differentiable,
but have global support. On the other hand, basis functions
used in finite difference or finite element methods have small
compact support, but have poor continuity properties. As a
result, spectral methods have good spectral localization, but
poor spatial localization, while finite difference and finite ele-
ment methods have good spatial localization, but poor spectral
localization. Wavelet bases seem to combine the advantages
of both spectral and finite difference (or finite element) bases.
One can expect that numerical methods based on wavelet bases
are able to attain good spatial and spectral resolution.

Recently much effort has been put into developing schemes
based on properties of orthonormal wavelet bases introduced
by Meyer [6] and Stromberg |7]. These bases are formed by
the dilation and translation of a single function y{(x),

() = 27%(27x — k), )
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where j, k € Z. Then for certain «(x), the sequence of functions
{tfr1(x));pez forms an orthonormal basis in LXR). For more
information we refer to [8].

In wavelet applications to the solution of partial differential
equations the most frequently used wavelets are those with
compact support introduced by Daubechies [8]. Exploration of
the usage of Daubechies wavelets to solve partial differential
equations has been undertaken by a number of investigators
such as Beylkin et ol [9], Latto and Tenenbaum [10], Bacry
et al. {11], Schult and Wyld [12], and Qian and Weiss [13].
Additional references can be found in the recent review by
Jawerth and Sweldens [141.

Most of the wavelet algorithms for solving partial differential
equations can handle periodic boundary conditions easily (see,
for example, {13, 15]). The treatment of general boundary con-
ditions is still an open question even though different possibili-
ties of dealing with this problem has been studied (see [16—19]).
The variational approach suggesied by Glowinski ez al. [16] is
not applicable for some nonlinear problems; furthermore, it is
impractical for higher dimensions. A different way of treating
general boundary conditions is to use wavelets specified on an
interval as suggested by Meyer [17] and Andersson er al. [18].
These wavelets are constructed satisfying certain boundary con-
dition. The disadvantages of this approach are inconvenience
of implementation and wavelet dependence on boundary condi-
tions. A more satisfactory approach is to use antiderivatives of
wavelets as trial functions, as done by Xu and Shann [19]. In
this way the singularities in the wavelets are smoothened and
the boundary conditions can be treated more easily.

Despite the relative success of the above-mentioned methods
all of them have one intrinsic difficulty which is the treatment
of nonlinearities in the equation. All of them to some extent
first map the space of wavelet coefficients onto the physical
space, compute the nonlinear term in physical space, and then
project the result back to the wavelet coefficients space using
analytical quadrature formulas or numerical integration (see,
for example, [9, 12, 13]). This procedure is not quite acceptable
since it is computationally expensive. It is desirable to have an
algorithm which operates only in one space without going back
and forth between the space of wavelet coefficients and physical
space. One way of doing this is 1o use a collocation method
analogous to the spectral collocation method.

The main objective of the paper is to present a new numerical
approach for solving partial differential equations with arbitrary
boundary conditions. In the presentation of the method we try
to be as general as possible, giving only the main philosophy
of the method and leaving some freedom for further exploration
of its applications. Even though we do not try to predict what
wavelet is the best for our algorithm (it is simply impossible,
due to the fact that some wavelets work better for some prob-
lems and worse in others}, we give some suggestions on wavelet
applicability for the present algorithm. We illustrate the method
using different wavelets; by doing so we illustrate the generality
of the approach. The proposed method utilizes the classical

idea of collocation to the wavelet approximation of partial
differential equations. In an independent study, Bertoluzza et
al. [20] vse a different approach to incorporate the collocation
idea with the auto-correlation function of Daubechies scaling
functions to solve linear boundary value problems.

Three issues are addressed in this work. The first is how to
incorporate the idea of collocation with wavelet bases to con-
struct an effective algorithm of solving partial differential equa-
tions. The second is how to deal with boundary conditions.
The last is how to construct a stable, accurate, and efficient
numerical algorithm.

The rest of the paper is organized as follows. In Sectiou 2
we discuss the wavelet interpolation technique. A brief descrip-
tion of the concepts of frames and Riesz bases are also given
there. The numerical method of solving partial differential equa-
tions is described in Section 3. In this section we also discuss
the efficient treatment of boundary conditions and the general-
ization of the method to higher dimensions. Finally, in Section
4 the numerical method is applied to the solution of Burgers
equation. A comparison with other aigorithms is given there
as well.

2. WAVELET INTERPOLATION

In order to develop an algorithm which can utilize different
wavelets, we try to be as general as possible. Thus we base
our discussion on wavelet frames since the concept of frames
is more general and includes Riesz and orthonormal bases, To
illustrate the algorithm we use the correlation function of the
Daubechies scaling functions of different orders (see Beylkin
and Saito [21]) and the Gaussian family of wavelets which are
given by

" 2
Yrx) = (—1)"% exp (— %2) = He,(x) exp (— %) 2)

where He,(x) is the modified Hermite polynomial. The choice
of these two wavelets is rather arbitrary.

Let us briefly review the definition of frames and the defini-
tion of a Riesz basis. For details see Daubechies |8].

Derinmion. A family of functions (¢))ez in a Hilbert space
H(R) with the inner product defined by {f, g)s = _fR Fx)g(adx
is called a frame if there exist A > 0, B <C = so that for all
J € H(R),

Al f b = Z [ £, bl = Bl f i, (3)

where || |} = {f, f)z- A and B are called the frame bounds.

If the two frame bounds are equal, A = B, then it is a tight
frame. Note if (¢)cz is a right frame and if || y[,zx = 1 for all
J € Z, then the frame bound gives the “‘redundancy ratio,”” the
measure of how muoch the frame is overdetermined. If this
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redundancy ratio, as measured by A, is equal to 1, then the
tight frame is an orthonormal basis.

DerFivimioN. A set of functions {(¢)ez] in a Hilbert space
H(R) is called a Riesz basis if there exist constants 0 << A <
B << = such that for every infinite square-summable sequences
{er k€ Z} (hat s, [[{ci)lfpy, < )

2

> cedul(x)

= = B“{ Ck}HJZE(ZJ

5B

4

A“{Ck}lﬁ?m = ‘

and the linear span of {(d ez} is dense in H(R). Here, A and
B are called the Riesz bounds.

Note that the following two statements are equivalent (see
[22]3:

(i) (Pez is a Riesz basis of L(R).

(i) (¢)ezis a frame of L*(R) and is also a linearly indepen-
dent family.

Furthermore, the Riesz bounds and frame bounds are the same.

it can be shown (see [8]) that if g, > 0, a; = 27g,, by =
abok, and grilx) = a7 P((x — bi)a), where y(x) is a wavelet,
then there exists a range or a discrete set of spacing parameter
by > 0 such that the set of wavelets {{#4(x) : j, k € Z} constitutes
cither a frame {as in the case of the Gaussian wavelets) or ait
orthogonal basis in H(R}. Note that the wavelet #/(x} is a smooth
and well-localized function, which means that |¢/(x)| = C
exp(—alx]) for x € R, m = M, and o > 0. For clarity of
discussion we will call wavelets corresponding to the same j
as wavelets of the j level of resolution. For convenience of
notation we use the superscript to denote the ievel of resolution
and the subscript to denote the location in physical space (with
the exception of a). Introducing W/{R) = spankez_xe,;d;i(x) it
can be shown that H(R) = U2, Wi(R). Note that for the
correlation function of the Daubechies scaling function the set
{Yrh(x) 1 k € Z) is a Reisz basis for W/AR) (see [201).

Up to this point we have been discussing frames on the real
line, even though we are interested in applications to a finite
domain. So one may ask how a frame, defined on the real line,
can be applied to a finite domain. Let us consider the closed
interval £} = [x,, x,]. In this case we take a; = 27, and
bi = (x, + x}/2 + abk, where ay = 27(x, — x)/by, L € Z;
then the set of wavelets {4(x) : j, k € Z} still constitutes either
a frame or an orthogonal basis in H{R). Note that for any j
there are values of k such that the wavelets y(x) are centered
outside of the domain {2. For clarity of discussion, all wavelets
whose centers are located within the domain, will be called
internal wavelets; all other wavelets will be called external
wavelets.

Let us consider a function w(x) € H{)). We introduce the
function #(x) € H(R), a(x) € CY(R) in such a way that
#(x) = u{x) for all x €  and #(x) decays to zero “‘fast enough’’
outside of the domain {). Note that discontinuities of FMU(x)

may occur only at boundaries of the domain. Then due o the
fact that the set of wavelets [¢{x):j, k¥ € Z} constitutes a
frame in H(R) there exist ¢} such that

+w +w

ax)= > > cllx) forxER. (5)
j=—= k=-—m
Based on the construction of #(x) we can write
+ o + . .
u(x) =, > i) forxe (L. (6
jE=—w k=~-n

Equation (6) answers our question. This equation is the starting
point for future discussions, Let W/((}) = spamez,cotfi(x). Let
us prove the following proposition.

ProrosimioNn 1. For any & > 0 there exists an integer L
such that for j < 0 and k € Z there exists a constant C such
that “l}'fﬁ(}f) - C”LZ(QJ < g.

Proaf. Since the wavelet )(x) is Holder continuous with
exponent a (see [8]), i.e., |Y(x) — Wlx + 1) = Cylt}* for all x,
¢t € R, we can write [[¢i(x) — ¢rlBDlig = 297922704 where
A = 272pE 2 + 1)7'CY. From the above inequality the
proposition follows for L = (2a + 1)7! log, (e¥4). ||

In other words, Proposition 1 means that for a proper choice
of L all the levels below j = 0 can be approximated by a
constant, so for the numerical approximation all these lower
levels can be excluded. Note that if L + j — 1 < 0 then there
is only one wavelet inside of the domain; the rest are located
outside. For L + j — 1 = 0 we have that ' 4~ = x, and
bii1 = x,. In order not to complicate the notation, each time
we use the index 2"%"' we mean the integer part of it, i.e.,
[2L+j—1 1.

The next question which arises naturally is whether all wave-
lets have significant influence in the approximation (6); if not
then we can keep only wavelets which are essential to the
approximation. Note that any wavelet is either zero outside of
its support {as in the case of Daubechies wavelets) or decays
tast enough away from its center (as in the case of Gaussian
wavelets), Thus there is always a finite number of wavelets
that are located outside of the domain () and whose infiuence
inside of the domain must be accounted. Thus at any level of
resolution there is a subset of integers {74 : -2/ — N, ...,
2471 + N} such that for k € Zj, the wavelet ) affects the
interior of the domain §2.

ProposImioN 2. For any &€ > O and j € Z there exists a
finite integer set Z'y such that for k & Z |||z, < &

Proof.  Without loss of generality let us consider only wave-
lets which are to the right of the domain €. Since bit1y, >
%, then ([l = J77 () dx = [0 (i) dx. Let

£= (r — b/, then | PETTE g dg =

Lol = J
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I grg) defor k > 20 + N, Since § € L(R) then there
exists an integer N, such that f_afN' Y& dE = g% Then it
follows that {4l iz = & [

The proof for the existence of &, is analogous. Note that for
symmetrical wavelets the number of wavelets centered on either
side of the domain is the same, N, = N,

Both Propositions 1 and 2 are essential for understanding
why some wavelets are retained, while others can be omitted
in the approximation {6). Even though in the proofs of the
propositions we gave the estimates for L, Ny, N,, these estimates
are conservative. In numerical applications L can be taken much
larger and N; and N, can be taken considerably less than the
estimates. Note that the size of the domain (1 characterizes the
largest scale which could possibly be present in u(x) € H(£}),
while in approximation (6) for f = O the largest scale is deter-
mined by L. That is why in most practical applications L = 1,
even though in sore cases L. can be taken larger. In numerical
computations, resolution is limited by memory constraints and
computational times. Thus we truncate the approximation (6)
at the finest level of resolution J. Consequently levels 0 and J
correspond respectively to the coarsest and finest scales present
in the approximation.

Let Wh(€)) = spanezi .cqifri(x). We note that in general

4(£)) C W/(L). The approximation of the function u(x} can
now be written as

wixy =Y

J
i=0

L),

i

)

i
kezi

where clearly u/(x) € U/, Wi({2). Note that in general coeffi-
cients in (7) are unique only if all wavelets at different locations
and levels are linearly independent. Nevertheless, the non-
unigueness of the coefficients ¢} does not preclude the existence
of a stable reconstruction algorithm. One way of finding the
coefficients ¢} is based on iterative reconstruction of the func-
tion from the inner product of the function itself with wavelets
and making use of the frame bounds as suggested in [6]. Since
we are interested in the collocation method, we cannot make
use of the above-mentioned algorithm. Let vs briefly discuss
the essence of our method of determining coefficients ¢. We
start from the coarsest level of reselution and progressively
move to the finest level. On each level the coefficients of
the lower levels are fixed, so we only obtain the coefficients
corresponding to that fevel. Let us rewrite approximation (7)
for any intermediate resolution level j (0 < j = J) as

wxy = "(x) + E chpix), l=j=J,
kEZY)
(8)
wxy = 2 cR(x).

kEZD

Thus the approximation #/(x) is nothing but a refinement of

the approximation w/~'(x}. Details of the algorithm will be
given later.

It is important for applications to be able to recover an
arbitrary function from a discrete set of sampled values. Let
{x;] be a set of locations in {} at which the function u(x) €
H(Q)) is sampled and {u; = u{x))} the corresponding sampled
values. We call the operator f the interpolation operator if

1y () = 2, L),
Z (%)

filx) = &y,

where J; is the Kronecker delta symbol and there exists a small
constant £ > 0 such that

luex) = 1) Mriay = eflu) (10)
Let {x!:i € Z})be a set of collocation points at the j level

of resolution. Then let us evaluate equations (8) at x} collocation
points, so we have

W) = W) + > chphixd),

228
l=j=L0=]=] €7, (LD
W) = D R, 0=1=<J i€ Z)
EZ;,
For convenience of notation we introduce the operator
All = plixd), O=1j=J,i€ Zy, k € Zi, (12)

which measures the contribution of wavelet ¢+ at location xf.
We choose the set of collocation points in such a way that
for any j (0 < j = J — 1) the following relation between the
collocation points of different levels of resolution is satisfied
{xf} C {xi"). (13
This relation between collocation points of different levels en-
ables us to have the same vaiues of the function at different
levels of resolution at the same collocation points. In other
words, the refation between the values of the function at differ-
ent levels of resolution is a simple restriction, fe., for 0 =
I=j=J o) = wixl)if xt = x),. Thus we can define the
restriction operator Rl as

u 1 forxi=xi,
Rin =

0 otherwise.

(14)

Then
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~ .
W= Rbiul,

mEZy

Os{=j=JicZ, (15)

where uf = w/(xi). Note that w/(x)=ulfor0 = [ =j= I

Once we have the approximation at a certain level, we can
find its value at the higher level of resolution, although in
general the value is not the same (with the exception of the
collocation points corresponding to both levels). Thus based
on the interpolation properties of the wavelet approximation,
we can introduce the prolongation P, operator so that

Wity = 3, Phiul, 0=j=1=Ji€Z,

J'HEZ“

(16)

We will define the prolongation operator later, since it requires
some preliminary work. At this point we assume that it exisis
and it is known.

Taking { = j in (11) and using (15) and (16), we can
write

2 £ —_
Z Adas, =

mEZQ

ZA.kck, O=j=s=J,i€EZh,

kEZn

a7

where A isa 2 + N, + N, + 1) ® (22 + N, +
N, -+ 1) matrix defined by (12} and the operator A%, is defined as

Afy, =

Riz— 2, PR

X
rzziy!

lﬂjf:_SS-J,l-EZ‘h,mEZi,

RE‘;” =0,0£.v£J,i€Z?;,mEZ§;.

(18)

Then for an appropriate choice of collocation points the matrix
A# is not singular, so we can write that

L{_ 2 C’kmum, OSJSSSJ’kEZJih

meZy

(19)

where

Clp = S (AWM A, 0=j=s=/k€ZhmEZ). (Q0)

i
PELY

Note that for any fixed j, (A#);) denotes the (k, p) element of
the inverse of the matrix A*/, while operator C4;, maps the set
of functional values at the s level of resolution into the set of
wavelet coefficients at the j level.

Now we are in position to define the profongarion operator.
Let us rewrite Eqs. (11) as

> Plhuh =2 > PURMw, + 3 Allch,

! Ol
mEZ}) mEZy pEZ); rezi

l=j=i<Ji€Z, 2l

J'U 0 —
2 amum - E A:kcb

mez, kezl,

j=0,0=1=<J,i€EZ.

Substituting (19) into (21) the following expression for the
prolongation operator can be obtained

>, P REY + 3 AUCY

-t ‘
PEZ, kEZY,

Pl = l=j=I=</i€ZLWmEZ) (22

E A kms

kez“

j=00=si=Ji€Z,meZj.

Now we see that, since the restriction operator is known, then
we have explicit form for A% and, consequently, for both
o8 and P Then using (18), (20), and {22) all three operators
Al T, and P, are obtained recursively.
Now we are in the position to start the discussion on interpola-
tion. We define the interpolation operator as

w(x) = 2, I, (23)
where
=Y 2 $ioC,  iezh, (24)

=0
1= kezf

It can be observed that the success of the interpoiation de-
pends strongly on the invertibility of the matrix A% Let |A|py,
and | A,y correspond to the minimum and maximum absolute
values of eigenvalues of the matrix A%#{. From the computational
standpoint, if the condition number, defined as C (A” = | A/
l}tlmm, is large then the inverse of the matrix A’, 18 Inaccurate,
Thus one would like to have the condition number as small as
possible. It can be shown that

2

1/‘\ (min“{ci}”ﬁ(zb] = = ‘/\{mm“{ci}”ﬁilh)’

Azl

{Z cfltffi(xf)}

kEZL,

(25)

where ”{c,}”f.(zj Yezlcl. Note that for any j, the set
{dri(xy &k € ZL} is a Riesz basis for Wi{Q) if

2

= Bl{{ciH|l3

L

>, chii(x)

keZY,

(26)

A“{C{c}”f?(z{!) =

Due to the equivalency of the norms the two statements (25)
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and (26) are equivalent. What is more, it can be shown that in
the limit of g; — 0 the ratio |A|y/|Alwn — B/A. The last
relationship is very important because, based on A and B in
(26) one can predict the condition number of the matrix A%,
Even though we do not exploit the fact that A and B, and thus
the condition number, can be analytically evaluated, this feature
can be very important in some applications.

Once the collocation points are known and the resulting
matrix is well conditioned the interpolation operator can be
constructed. In some application the derivatives of the interpola-
tion function is very important. In light of (7), (12), (23), and
(24) the mth derivative of the approximate function can be
writien as

wm(xy = E DI (x ), (27)
ey
where
i
D(xy =2, D PmnCE,, i€ Zh. (28)

=0 i
= ezl

Note that D(x) = I{x).

Before proceeding any further we want to say a few words
regarding the two different wavelets we use to illustrate the
algorithm. The first is the correlation function of the Daubechies
scaling function of order 5 and b, = 1.0 (see Beylkin and Saito
[21]). We choose the order 5 as a compromise between the
requirement on continuity of the second derivative (which we
will need later) and the demand to have the support as small
as possible. The second belongs to the Gaussian family of
wavelets given by (2), where we use n = 2 and various values
of b,. This wavelet is also referred to in the literature as the
““Mexican hat’’ because of its distinctive shape. Keeping in
mind, that our goal is to illustrate the method, we will focus
our discussion on these two functions, although we will discuss
the peculiarities related to the use of wavelets of different
orders. In addition, since both functions are symmetrical, we
use N; = N, = N. Note that the correlation function of the
Daubechies scaling function is not a wavelet, due to its non-
zero mean; however, the present algorithm can be used with
any suitable function which has local support in both physical
and wavenumber spaces. In order not to cloud the discussion
we will refer to these latter functions as wavelets, keeping in
mind the difference.

Since every wavelet is characterized by the location &4, then
for internal wavelets these locations seem to he the most natural
choice for collocation points, while for external wavelets the
collocation points can be chosen differently. In the present
method we locate them inside of the domain of interest. One
may speculate on the best choice of placement strategy for
collocation points. However, we emphasize once again that our
goal is to present the general philosophy of the method which

-5

XX

= jpcation of wavelet
% collocation point asseciated with internal wavelst

O coliocation point associated with external wavelet

FIG. 1. The location of collocation points near x, for N = 2.

works tor typical wavelets. Note that for a different choice of
wavelets the placement strategy may be different, since one may
exploit the specific properties of the wavelet. Let us describe the
placement strategy which we adopt in this work. The collocation
points for the external wavelets corresponding to the finest
scale are taken to be distributed uniformly in the boundary
intervals [x;, 5 + bea)] and {x, — bwa;, x 1. The collocation
points for j <C J are distributed in intervals [x;, x, + bya;] and
[x, — buay, x,]; they are taken to be the collocation points of
the higher levels of resolution. This is a very simple placement
strategy. First we use the collocation peints of the internal
wavelets of the j + 1 level of resolution which belong to [x;,
X + by} and [x. — bya;, x], then if all the collocation points
of internal wavelets of the j + 1 level are used, we proceed to
the j + 2 level and so on. When the procedure reaches the J
level of resolution and we need additional collocation points,
then we use the collocation points associated with the external
wavelets of the J level of resolution. The placement strategy
is illustrated in Fig. 1 for N = 2.

It is important for the algorithm to be able to approximate
functions which have non-zero mean, since the method in gen-
eral may utilize wavelets whose mean is zero. Another required
feature is to be able to resolve all the scales present in the
approximated function. To test these features we choose to
appreximate the function

u(x) = 5x’ — 1) — sin(mx) + 27 sin(25 7x) (29)
+ 270 gin( 2 i),

which has multiple scales as weill as non-zero mean. For the
test case x; and x, are taken to be —1 and |, respectively.

Let us first discuss how the choice of N affects the approxima-
tion. Figure 2 shows the interpolation error for J, = 5 using
the Gaussian wavelet and L = 1,7 =5, by = 1.0, N = 0. It
can be seen that the error is not uniformly distributed within
the interval. The largest error occurs close to the ends. Adding
external wavelets decreases considerably the overall error of the
interpolation as shown in Fig. 3. However, we cannot increase N
without limit. By adding more wavelets outside of the domain
whose support does not intersect with the domain of interest
we make the matrix A4 ill-conditioned. In fact the condition
number of the matrix increases with the increase of N, making
the matrix inversion difficult and inaccurate. Thus for a specific
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| u{w) —wiz) |
I u(e) lleo

05 0.0 0.5 1.0
x

FI1G. 2. Relative error of the interpolated function (29) with J, = 5 using
the Gaussian waveletand L = 1, J = 5,5, = 1.0, N = 0.

choice of wavelet and all other parameters fixed, there is an
optimum number of external wavelets. The effect of & on the
interpolation error is illustrated in Tables I (cases 1-4) and 1I
(cases 1-3). Since for some choices of the parameters the
interpolation error close to the boundary of the domain is higher
than in the middle of the domain, in Tables I, II we give
the results for the interpolation error of the function and its
derivatives not only for the whole domain x € [—1, 1] but also
for the interior interval x € |—41, 3]. Note that for the Gaussian
wavelets adding external wavelets makes the interpolation error
nearly uniform, while for the case of the correlation function
adding external wavelets decreases the error close to the bound-
ary, but it is still higher than in the middle of the domain.
In addition, for the same total number of wavelets N, the
interpolation based on the Gaussian wavelet results in a smaller
error than using the correlation function (see Tables I, II).
Nevertheless one cannot conclude that the Gaussian wavelet is
better than the correlation function, simply because there is

FIG. 3. Relative error of the interpolated function (29) with J, = 5 using
the Gaussian wavelet and L = |, J =5, b, = J.O, N =2,

possibly another choice of collocation points which may work
better for the latter.

As it was mentioned earlier L defines the largest scale present
in the approximation, while J determines the finest scale of
resolution. Let us discuss how the parameters L and J affect
the performance of the wavelet interpolation. From (29) it can
be seen that for J, = 2 the minimum scale of the function
(based on one-fourth the wavelength of the most oscillatory
component is 27%*!, The distance between collocation points
in the middle of the domain is 27!, So one would expect
to have a poor approximation if L + J << J;. This is confirmed
by Fig. 4 and from the numerical resulis shown in Tables 1
(cases 1, 5-8) and 11 (cases 1, 4-7). These results indicate
that the method converges uniformly with the increase of J.
Unfortunately we are not able to prove this observation rigor-
ously. Numerical results indicate that the interpolation error
converges spectrally in the interior of the domain and in the
whole domain for the appropriately chosen N. The convergence
rate is affected by the choice of wavelets and other parameters.
It should be noted that for smail & the interpolation error
converges algebraically. This is the reason why the choice of
N is very important. Note that the interpolation functions on
Fig. 4 for / = 1 and J = 2 look very similar, vet they are
different. This visual similarity occurs due to the absence of
the scale corresponding to / = 2 in the function {29).

The effect of the multilevel approach is illustrated in Tables
T {cases 1, 9, 10y and 1T (cases 1, &, 9). For the same number
of collocation points (N, = 27 + 2N + 1), the interpolation
error depends on the number of levels of resolution present in
the approximation, ie., J + 1. For fixed N,,, regardless of the
choice of wavelet, the interpolation error increases with the
decrease of J. Note that if J = O we have a single level approxi-
mation as in the case of Bertoluzza et al. [20].

A distinctive feature of the multilevel approach is the possi-
bility of resolving various scales using wavelets of different
scales, while in the single level approach all scales must be
represented using smaller scale wavelets. In typical applications
one can estimate the smallest and the largest scales present in
the problem. Based on this information L and J can be chosen
appropriately. Note that (19) gives an inexpensive way of calcu-
lating the wavelet coefficients ¢i. Thus in the multilevel ap-
proach we can obtain the energy spectrum for different scales
present in the approximation, while for a single leve! approach
this information is lost. Even though we did not take advantage
of this property in the present multilevel approach, it can be
exploited in a fully adaptive algorithm. Also note that in the
multilevel approach the error at the boundary decays much
faster than with the single level.

The spacing parameter by also affects the wavelet interpola-
tion. The frame becomes too redundant if &, is too small, i.e.,
by < 0.4, so that the matrix A%l becomes ill-conditioned and,
thus, difficult to invert. At the same time, as is shown in [§],
the frame becomes looser with the increase of by, so one would
expect the overall interpolation error to eventually increase
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TABLE 1

xe[~1,1] x € [—1/2, 1/2]
e N L 1 N B e A e e P U
fl ]l e[l fler"Ml [l [l il [

1 2 | 5 69 1.00 1.90 X 107 1,78 X 107* 6.13 x 1073 1.29 X 107¢ 2.63 X 10°° 1.96 X 107
2 0 1 5 65 1.00 4,13 X 107 1.30 X 1072 7.37 x 1072 129 x 1078 2623 007%  1.96 X 10
3 { | 5 67 1.00 8.61 X 1075 744 X 107 147 % 107! 127 X 107 259 x 10° 193 % 107
4 3 1 s 71 1.00 208 X 107 409X 107 339 x 107 208 X 10~ 400 X 107 308 X 1074
5 pA 1 3 21 1.00 7572 W 349 x Q7! 825 x W07 757 X 10T 349 X 107 661 X 107!
6 2 1 4 37 1.00 1.08 X 10°¢ 8.76 X 107 1.03 x 1072 5.16 X 1073 6.76 X 10 2.52 X 107
7 2 1 6 133 1.00 7.25 X 1078 1.70 X 107° 117 x 107 404 x 1077 1.71 X 1077 260 x 10°¢
g 2 1 7 261 1.00 393 x 107 1.80 % 107% 249 ¥ 107 413 x 107" 335 x 1077 104 X 107
9 2 4 2 69 1.00 306 X 1076 301 X 107 1.08 % 1072 1.31 % 107 265 X 107% 1,98 X 107*
10 2 6 0 69 1.00 217 X 1070 209 X 1077 709 x 1070 BI7 X 107 455 X 107 248 X 1072
11 2 1 5 69 0.50 375 X 10°® 1.99 x 107* 6.77 X 107 1.95 X 1077 349 X 107 279 X 1078
12 2 1 5 69 0.75 505 x 1070 202 x 1074 677 x 107 1.29 X 107% 208 X 1077 1.83 x 10°®
(] 2 5 69 1.25 420 x 107 108 X 1077 417 x 107 276 x 197 403 < 10F S17 x 107

when by becomes too farge. The results of varying by are shown
in Table I (cases 1, 11-13). The upper cutoff for b, can be
understood by focusing on the interaction of two wavelets as
shown in Fig. 5. One can easily see that with increasing b, the
depth of a valley, which appears between the two wavelets,
increases. This results in the loss of the interpolation. The
appearance of the valley between two wavelets can be used as
a criteria for the applicability of the wavelets for the present

algorithm. Consequently, based on this criteria, as can be seen

in Fig. 5 the upper cutoff for by is about 1.5, which is in
agreement with the loss of the frame indicated by Daubechies
in [8].

Even though we do not present the results here, we note that
for single level approximation the results using the Gaussian
function (z = 0 in (2)} and the correlation functton are not so
different than those obtained with the multilevel approximation.
This is not true for n > 0 for the Gaussian family of wavelets.
What is more, it can be shown that for n > 0 the single level
approach cannot be used to approximate a function whose scale
is much larger than the scale of the wavelet. Note that this is
always the case for a wavelet which has a zero mean. We also
observed that for other wavelets of the Gaussian family the
interpolation is better for lower order wavelets. Actually it is
the best for n = 0, which corresponds to the Gaussian function.

TABLE 11

Maximum Normalized Error of the Interpolated Function and Its Dernivatives for the Correlation Function of the
Daubechies Scaling Function (J, = 5)

xE[—11] x € [—1/2, 1/2]

_ i P F "o p — g [ rL " __ o
Case N . y . L Vi M 705 PO P75 PO i L M U

fuafl fla']l ae (lzll "Ml "]l
| i [ 5 67 7.56 X 10°* 6.39 x 107? 1.24 X 107! 1.25 % 107¢ 1.19 % 1073 361 x 10
2 0 1 5 63 8.08 x 10~ 3.24 % 1072 2,89 X 107 1.25 X 107¢ 1.19 X 107 3.61 X 1074
3 2 1 5 69 1.28 X 107* 3.37 X 107 1.21 x 107! 125 X 107® 1.19 X 107° 3.61 x 10
4 1 1 3 9 7.91 x 10°* 3.65 % 107 1.19 X 107" 7.01 X 1072 3.65 X 107 6.95 x 107!
5 1 1 4 35 168 % 107 1.32 % 102 857 x 1072 547 % 107 5797 x 107 3157 x 1072
6 1 1 6 131 6.79 X 1077 7.65 % 107 4.34 X 1072 1.49 % 107° 5.02 X 1078 1.90 X 107¢
7 1 I 7 259 9,13 x 1077 3.57 x 107 315 X 1072 1.53 X 1072 3.64 X 10°¢ 7.70 % 1077
8 I 4 2 67 8.90 x 107 8.16 x 107} 1.72 X 10 1.25 x 107¢ 1.19 X 1073 3.6 X 1074
9 1 6 0 67 240 x 107 3.58 X 1077 1.23 X 107! 1.25 x 107¢ .19 X 107F 3,79 X 10~
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FIG. 4. Function (29) with J, = 5 (- } and its approximation (23) (—-—) using the Gaussian wavelet with different Jand L = |, &y = 1.0, N = (.

This phenomenon can be explained by the fact that the lower
order Gaussian wavelets are less oscillatory, which makes them
more appropriate to use in the present algorithm. It was also
found that in the case of the correlation function of the
Daubechies scaling function the interpolation error in the mid-
dle of the domain decreases spectrally with increasing order of
the function. Nevertheless the error at the boundary is not
affected at all.

The application of the wavelet interpolation algorithm to the
solution of partial differential equations is described next.

3. APPLICATION TO AN EVOLUTION EQUATION ON A
FINITE DOMAIN

As mentioned earlier, the treatment of general boundary con-
ditions on a finite domain is one of the difficulties for most
wavelet algorithms. We suggest two different approaches of
dealing with boundary conditions. The first is the derivative
approach and the second is the integral approach. Since our
main interest is in applications to fluid mechanics, we will
demonstrate the method through its application to the solution
of a second-order partial differential equation of the type

)
Pl x, u, u,u) fort> 0, u(x, 0) = ulx),

at (30)

where F is a linear or nonlinear operator. If the boundary
conditions are inhomogeneous, the solution can always be writ-
ten as a sum of a particular solution which satisfies the inhomo-
geneous boundary conditions and a complementary solution
which satisfies homogeneous boundary conditions. Thus, with-
out loss of generality, we consider the problem with homoge-
neous boundary conditions. We illustrate the method by solving
(30}, together with the Dirichlet boundary conditions

u(x, ) = uix,, 1y =10 3D

3.1. Derivative Approach

Following the classical collocation approach and evaluating
(27), (28) at the collocation points x! of the finest level of
resolution we obtain

Wy = DIul(n), (32)
=i
r
D= Y gm)Ci, (33)

=0 "
=% pezd,

where i € Z{and C}} is given by (20). If we number the
collocation points is such a way that
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FI1G. 5.

x-’_2L+J_]_N1 = x("} x§L+J-I+Nr = xr’ (34)
then Eq. (30) reduces to a system of 2'* + N, + N, — |
nonlinear ordinary differential equations

d
IO = FUxL ). DR DRty

1{(0) = wg{x),

where repeated indices imply summation from —2"! — N,
to 247 4+ Noand { = —2891 — N+ 1, L, 280 N —
1. The boundary conditions (31) become

“1—2“"'—;\;,(1‘) = ui"“””+N,(f) =0 (36)
After solving (35) with boundary conditions (36), the solution
on the interval is given by

Wi, 0 = 2, I(x)ukn. (37)

i€z},

Note that for Neumann or mixed boundary conditions, (36) is
replaced by an algebraic relation between uf, i & Z{,. Thus one
has to solve a differential-algebraic system of equations, which

Gaussian wavelets ¢(x) and Y(x — by (——--) and their sum (——).

can be rewritten as a system of coupled ordinary differential
equations by expressing the values of the function at end points
in terms of its values at the interior locations. In addition we
note that even though the construction of the discrete derivative
operator D requires some effort, this is only done once.
Subsequently, the right-hand side is obtained by evaluation of
matrix products, which can be performed very efficiently on
vector computers.,

3.2. Integral Approach

The essence of the integral method is to approximate the
highest derivative appearing in the partial differential equation
and then to integrate the approximation while incorporating the
boundary conditions using integration constants. Writing the
approximation for the second derivative as

uh(x, ) = 2, D e x),

=0 ez
= ez,

(38)

integrating twice with respect to x, and using the boundary
conditions (31) we obtain the expression for w/(x, t) and
wl(x, 1),

J
Wix, )= > D ()i,

o
=0 gezf)

(39)
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J o—
wl(x, 1) = 2 >, el (x), (40)

=0
R =72 N

where

W) = i(x) — W) —

X, —x . X—x
X, — X X,

(). (@)

- X,

Note that (¢)"(x) = (¥1)"(x). We now have a set of functions
i(x) satisfying the boundary conditions exactly. For clarity
of discussion we will call these functions the extended wavelets,
Note that the extended wavelets are not wavelets in the strict
sense of wavelet definition, but if they are located far enough
away from the boundaries they approach wavelets, due to the
fact that the boundary terms become either numerically negligi-
ble (if the wavelets decay expenentially} or zero (if the wavelets
have compact support). We have not presented interpolation
results using extended wavelets since they are almost identical
to those using the normal wavelets. The slight difference is
that for the extended wavelets the same accuracy is achieved
using one less boundary wavelet than with the normal wavelets.
This can be explained by the fact that the extended wavelets
satisfy the function at the boundaries exactly.

In this approach the collocation points are taken to be the
same as in derivative approach, except that now the wavelets
whose locations are on a boundary are considered to be external
wavelets. This is necessary since boundary conditions are now
satisfied automatically. Following the classical collocation ap-
preach and using (27) we can write an expression for deriva-
tives. This expression is exactly the same as (33) except that
Wi(x)) is used instead of {(x!). The initial-boundary value
problem (30), (31) reduces to the system of 21/ + N, + N, +
1 nonlinear ordinary differential equations given by (35). After
solving (35), the solution on the interval is then again given
by (37) with ¢/(x) replaced by ¥(x) in the definition of I(x).

3.3. Generalization to Higher Dimensions

It should be noted that both the derivative and integral wave-
let collocation approaches can be easily generalized to rectangu-
lar two- and three-dimensional domains. Let us illustrate how
the method can be applied in the two-dimensional case. We
will ilkustrate the method for the partial differential equation
of the type

% = F(t,x, . DPD™y for 1> 0, u(x, y,0) = wlx, y), (42)

where F is a linear or nonlinear operator and n and m denote
the order of derivatives. Analogous to the one-dimensional case
and without loss of generality, we consider the problem with
homogeneous Dirichlet boundary conditions

wx, yvo )= uwlx, v, ) = ulx, vy, )= uix, y, 1) =0. (43)
Then introducing derivative operators in the x and y directions
analogous to the one-dimensional case we can write the follow-
ing system of equations:

d
0 = Festof ogpgas).

u{_,’((o) = uO(x{, yJK)’

Boundary conditions in the derivative method can be incorpo-
rated analogously to the one-dimensional case, while for the
integral approach they are taken care of automaticaily. We will
not elaborate further on the application of the method to higher
dimensions here.

4. RESULTS AND DISCUSSION

As a test problem for the numerical algorithm described in
the previous section, we will consider Burgers equation

du e a%u
—tu—=p— - >
YLk w xe(—1,1),t>0 (45)
with initial and boundary conditions
u(x,0) = —sin(wx), u(zl,)=0 (46)

whose analytical solution is known (see [23]). For the sake of
simplicity we will discuss only the formulation for the deriva-
tive approach, since essentially identical results are obtained
when either the derivative or integral approaches are used with
either wavelet. Also note that the boundary conditions are the
same at the two ends and since the wavelets that we utilize are
symmetric, we use the same number of external wavelets on
each side of the domain, i.e., N; = N, = N. In light of (35) and
(36) the problem reduces to

d
—ul(r) = 2, [—ul(nDL) + vDR) ul(r),
dt kezy ' '

u(0) = —sin{mxf), 47

#harmon(t) = 0,

wherei = =27V — N+ 1, .., 221 + N — 1. The system (47)
is solved using a fifth-order Gear implicit integration algorithm
implemented in the IMSL routine IVPAG [24] with the fixed
integration step At = 5 X 107/

Basdevant et al. [23] presented a comparative study of spec-
tral and finite difference methods for the solution of (45) and
(46) and v = 10~%7. For such a small viscosity, the solution
develops into a saw-tooth wave at the origin for r = /7.
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FI1G. 6. Apalytical solmion of the Burgers equatton at times ¢ = 2i/57,
i=0(1)5.

The gradient at the origin reaches its maximum value
| 0147 3% clmex = 152.0051616 at time t,,, = 1.60369/7. 1t ap-
pears from the study of Basdevant er al. {23] that the perfor-
mance of a numerical method can be judged from its ability
to resolve the large gradient region that develops in the solution,
which is shown in Fig. 6.

The results obtained with the wavelet collocation method
are given in Tables 1II and IV. In Table V our results are
compared with those obtained using other methods (see [23])
as well as using a wavelet Galerkin approximation (see [15]).
The numerical results show that the biggest error occurs in the
neighborhood of x = 0, where the solution develops a shock.
Due to the viscosity, the shock has a finite width. One would
expect to resolve the shock properly if the smallest scale wave-
lets are such as to satisfy bya; = |0u/3x|,—gzk. Since for our
particular problem bya, = 2!74~, then the shock can be resolved
properly for I + J > 9. Occurrence of localized oscillations
is noted in cases 2—4 in Tables IIT, IV. Analogous observations
were made by Liandrat and Tchamitchian [15] (see Table V):
in the non-adaptive case they did not observe oscillations for
J = 8. These oscillations, in contrast to those of Gibbs type
observed in spectral methods, are localized in the neighborhood
of the shock. This is illustrated in Fig. 7 corresponding to the
derivative collocation method using the Gaussian wavelet with
L=1,/J=5 N=2 by =1.0. (In Fig. 7 linear interpolation
is used between collocation points to highlight the oscillations.)
For L. + J = 8 the oscillation are visually unnoticeable. The
normalized errors of the solution and its derivative for the
derivative approach using the Gaussian wavelet with L = 1,
J =8 N =2, b, = 1.0 are shown in Fig. 8. It can be easily
seen that the largest errors occur in the neighborhood of the
large gradient.

Similar to the interpolation results the number of levels of
resolution J + 1 present in approximation strongly affects the
accuracy of the method. This is illustrated in Tables 11T and 1V
(cases 1, 5-7).

Since the local error is largest in the neighborhood of the
shock one would expect results for this particular problem to
be insensitive to N, However, this is not true. The situation is
completely analogous to the interpolation example: addition of
outside wavelets increases the accuracy of the solution near
the boundary (see Tables IIT and 1V (cases 1, 8)).

As it can be easily seen from Tables III, 1V the cheice of
wavelet strongly affects the performance of the method, We
can say that for essentially the same number of degrees of
freedom, the Gaussian wavelet does better than the correlation
function of the Daubechies scaling function in resolving the
shock, while their accuracy is practically the same in the region
where the solution is smooth.

As with interpolation, the accuracy of the method for the
Gaussian wavelet depends strongly on by (see Table 111 (cases
1, 9—11)). The method becomes more accurate for smaller b,
Nevertheless with the decrease of b, the frame becomes more
redundant; eventually the accuracy is completely lost for by <
0.4. In addition the approximation is also lost when b, becomes
too large, due to the loss of frame. We also note that with the
increase of b, the approximation of derivatives is lost faster
than for the function itself. That is why for case 11 in Table
ITI, while there are no oscillations, the numerical solution is
poor in the whole domain.

Even though the results are not shown here, the order of
wavelets n affects the accuracy of the method as well. For the
Gaussian wavelets with by = 0.5 the accuracy of the method
is slightly less for n = 4 than for n = 2, while for by = 1.0
the method loses the approximation completely for n = 4, As
far as the implementation of the collocation method for the
correlation function of Daubechies scaling function is con-
cerned, the accuracy increases with increasing order of the
scaling function. Also note that for the Gaussian wavelets with
n > () the method loses the approximation when a single level
approach is used, while with n = 0 it does slightly worse
when a multilevel approximation is used. The reason for this
is discussed in Section 2.

A comparison of eight different methods for the solution
of Burgers equation (45) with initial and boundary conditions
(46) is made in Table V. The eight algorithms compared
are: Fourier Galerkin method, Fourier pseudospectral method,
Chebyshev collocation method, spectral element method,
finite difference method with coordinate transformation, finite
difference method on uniform grid, wavelet Galerkin method,
and the present algorithm. Let us briefly comment on some of
the above-mentioned algorithms. The Fourier pseudospectral
method uses the tau projection method for the linear part
and a pseudospectral scheme for the nonlinear term. The
spectral element method decomposes the computational do-
main into properly chosen nonuniform subdomains and ex-
pands the unknown in each subdomain as a Lagrangian
interpolant using Gauss—Lobatto Chebyshev collocation
poinis. The method to which we refer as a finite difference
method on a uniform grid is a method of lines with cubic
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TABLE III

Numerical Results Using the Derivative Approach and the Gaussian Wavelet for the Solution of Burgers Equatién

Numerical del-1,11 xe23,1
Cuse N L J N, by T e - %(0. tnar) max|u — u| Remarks
1 2 1 8 517 1.00 1.6035 151.07 9.00 x 10°° 574 X 1077 No oscillations
-2 2 l 3 69 1.00 1.6030 57.03 1.83 x 10! 2.85 > 107 Localized oscillations
3 2 1 6 133 1.00 1.6025 97.66 g.25 X 107! 601 x 167° Localized oscillations
4 2 I 7 261 1.00 1.6010 136.76 1.18 x 1072 3.70 X 10°° Localized small oscillations
5 2 5 4 517 1.00 1.6035 151.07 9.00 X 107 570 % 1077 No oscillations
6 2 7 2 517 1.00 1.6035 151.07 8.93 x 107? 2.86 X 10°® No oscillations
7 2 8 1 517 1.00 1.6035 150.62 211 x 197 985 x 107 No oscillations
8 0 1 8 513 1.00 1.6035 151.07 9.04 X 1073 8.54 X 107° No osciltations
9 2 1 8 517 0.50 1.6035 151.48 430 X 107° 3.08 X 1078 No oscillations
10 2 1 8 517 .75 1.6035 151.43 6.18 X 107° 3.13 X 1078 No oscillations
11 2 1 8 517 1.25 1.5780 144,10 3.08 x 107" 217 X 107 No oscillations

Hermite polynomials which we implemented using the IMSL
routine MOLCH [24]. With regard to the accuracy of the
solution, Table V shows that for the same number of
degrees of freedom, the present wavelet collocation method
is competitive with spectral schemes and more accurate than
finite difference methods, In comparing with the results
obtained using a spline wavelet non-adaptive algorithm [15]
we see¢ that we require twice as many wavelets to resolve
the shock properly. This is due to the fact that Liandrat
and Tchamitchian [15] locate wavelets in a staggered manner,
which effectively decrease the number of wavelets required
to resolve the shock. This can be done in their Galerkin-
type algorithm. However, the requirement in the present
algorithm that collocation points at lower levels of resolution

be a subset of those at the higher levels makes it impossible
to locate wavelelts in a staggered manner in our case.
Nevertheless, while Liandrat and Tchamitchian provide no
details, due to the collocation nature we expect that the
present algorithm is more computationally efficient. Most
importantly, we note that their method is limited to problems
with pericdic boundary conditions. This limitation, while
acceptable for the present problem, precludes the use of
their method in the solution of other problems with more
general boundary conditions.

5. CONCLUSIONS

A wavelet collocation method based on the wavelet interpela-
tion technique is developed for the solution of partial differential

TABLE IV

Numerical Results Using the Derivative Approach and the Correlation Function of the Daubechies Scaling Function for the
Solution of Burgers Equation

Numerical xe[-1,1] xi€[2/3,1)
Case N L I N, Tl - %E(O, Fonax)} max|u — u’| Remarks

1 1 1 8 515 1.6030 149.28 1.72 X 10™° 6.44 % 107¢ No oscillations

2 1 1 s 67 1.6670 59.49 325 X 107! 285 % 10* Localized oscillations

3 1 1 6 131 1.6110 97.93 [.59 x 107 5.85 x 1077 Localized osciliations

4 1 1 7 259 1.6015 132.95 2.01 X 1072 874 X 10°F Localized small vscillations
5 | 5 4 515 1.6030 149.28 1.72 X 1073 330 X 1077 Ne osciliations

6 1 7 2 515 1.6030 149.28 174 x 1073 569 x 10 Ne oscillations

7 1 9 0 515 1.6030 149,59 3.01 x 107} 3.04 x 107 Ne oscillations

8 §] 1 B 513 1.6030 149.28 1.72 % 1073 1.77 X 107 No oscillations
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TABLE V

Comparison of Different Methods for the Solution of Burgers Equation (45) with Initial Condition (46) (v = 107%/7)
(analytical values 1,,,, = 1.60369/7 and {du/ax)(0, 1.0 = —152.0051616)

. Integration
Numerical
au Degrees of step
Method Tlas T (0, tyut freedom it Remarks
Fourier Galerkin Spectral [23] 1.6035 151.94 682 5 x 107* No oscillations
1.60 142.67 682 1072 Spread oscillations
1.603 148.98 170 5% 107 Spread oscillations
1.60 142,31 170 1072 Spread oscillations
Fourier Pseudospectral [23] 1.60 142,61 256 1672 Spread oscillations
1.60 144.24 128 10-2 Spread oscillations
Chebyshev Collocation [23] 1.60 145.88 512 5% 107 Spread oscillations
Non-Uniform Spectral Element {23] 1.6033 152.04 64 10746 No oscillations
Finite Difference [23] (second order + stretching) 1.63 150.1 81 1072 No oscillations
Finite Ditference {uniform grid} 1.557 61.69 129 5% 107 No oscillations
1.593 105.93 257 5% 10 No oscillations
1.601 136.07 513 5 X 107 No oscillations
Wavelet Galerkin [15] {periodic boundary conditions,
spline wavelet of order 1 = 6, smallest scale J = 7) 1.63 135.0 128 1073 Localized oscillations
m=26,J=8) 1.64 150.3 256 1072 Localized oscillations
{(m = 6, J = 8, adaptive) 1.64 150.3 =104 1072 No oscillations
Derivative Collocation Method using Mexican hat wavelet 1.6035 151.48 517 5% 107 No oscillations

L=1J=8,=05N=2

equations in a finite domain. Two different approaches of treat-
ing general boundary conditions are suggested. The method is
tested on the one-dimensional Burgers equation with small
viscosity, Comparison with other numerical algorithms shows
that method is competitive and efficient.

Future areas of further development include the application
to two- and three-dimensional rectangular domains and the
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FIG.7. Comparison of the solution at £ = r,,,, using the derivative approach
and the Gaussian wavelet ( ) with the analytical solution {(——-) for
L=1,J=5N=2b=10.

development of a fully adaptive algorithm. This work is cur-
rently under way.
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FIG.8. Normalized error of the solution #'(x) at f = f,,, using the derivative
collocation approach with the Gaussian wavelet (m = (: ) and its
derivative (im = 1: — ) for L= 1, J =8, N =2 b, = 1.0
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